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or the past 50 years, semiconductor physics has

played a vital role in almost every aspect of modern

technology. Advances in this field have allowed scientists

to tailor the conducting properties of certain materials and

have initiated the transistor revolution in electronics. New

research suggests that we may now be able to tailor the properties

of light. The key in achieving this goal lies in the use of a new class

of materials called photonic crystals,1 whose underlying concept

stems from the pioneering work of Yablonovitch2 and John.3 The

basic idea is to design materials that can affect the properties of photons

in much the same way that ordinary semiconductor crystals affect

the properties of electrons. This is achieved by constructing a

crystal consisting of a periodic array of macroscopic uniform

dielectric (or possibly metallic) “atoms.” In this crystal, photons can

be described in terms of a band structure, as in the caseof electrons.

Of particular interest is a photonic crystal whose band structure
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A class of materials has recently emerged that provides new
capabilities for the control and manipulation of light.These materials,
known as “photonic crystals,” affect the properties of a photon in much
the same way that a semiconductor affects the properties of an
electron.This ability to mold and guide light leads naturally to many
novel applications of these materials in a variety of fields including
optoelectronics and telecommunications.The author presents an
introductory survey of the basic concepts and ideas, including results
for photon phenomena that have never been possible before.



mit physics annual 2001  joannopoulos ( 33

possesses a complete photonic band
gap (PBG), namely, a range of
frequencies for which light is
forbidden to propagate inside
the crystal. Forbidden, that is,
unless there is a defect in the
otherwise perfect crystal. A
defect can lead to localized
photonic states in the gap,
whose shapes and properties

would be dictated by the nature
of the defect. Moreover, a very

significant and attractive differ-
ence between photonic crystals and

electronic semiconductor crystals is
the inherent ability of the former to

provide complete tunability. A defect in
a photonic crystal could, in principle, be

designed to be of anysize, shape or form and could
be chosen to have any of a wide variety of dielectric

constants. Thus, defect states in the gap could be tuned
to any frequency and spatial extent of design interest. In addition

to tuning the frequency, one also has control over the symmetryof the localized photonic
state. All of these capabilities provide a new “dimension” in our ability to “mold,”
or control, the properties of light. In this sense defects are good things in photonic
crystals, and therein lies the exciting potential of these novel materials. Photonic crys-
tals should allow us to manipulate light in ways that have not been possible before.
The purpose of this article is to highlight some of these novel possibilities. 

Here, computation plays a particularly important role. Indeed, unlike electronic
structure in semiconductors, photonic crystals are unique in that phenomena
described by Maxwell’s equations can be calculated on a computer to any desired degree
of accuracy. Thus computer calculations and design playa particularly important comple-
mentary role to experimental investigations in the study of photonic crystals.

Finally, Maxwell’s equations do not possess a fundamental length scale and this

“Photonic crystals

should allow us 

to manipulate

light in ways that

have not been

possible before.

”



has important implications to both theory and experiment. For theory, this means
that calculations can be done at a generic lengthscale, and the final results can be
simply scaled up or down to the required wavelength of interest. For experiment,
this means that measurements could be performed with photonic crystals designed
at millimeter or centimeter lengthscales, where fabrication and characterization is

simple, and that these results would have immediate relevance to photonic
crystals designed at the ~1.5 micron lengthscale (the canonical wave-
length in optoelectronics and telecommunications), but for which fabri-
cation and testing are much more demanding.

Computational Methods
Maxwell’s equations for the propagation of light in mixed, loss-less dielec-
tric media can be cast in a form reminiscent of Schrödinger’s equation.
Consequently, techniques that are used to study electrons in solids may
also be used to study photon modes in photonic crystals.4,5 The main
difference is that electrons are described bya complex scalar field and strongly
interact with each other, whereas the photons are described by a real
vector field and do not interact with each other. For all practical purposes,
then, solution of the photon-equations leads to an “exact” description of
their properties. This represents one of the few cases in science where computer
experiments can be as accurate as laboratory experiments!

There are two types of computational methods that we employ to study
photonic crystals numerically: time domain, a “numerical experiment” in which
the time-evolution of Maxwell’s equations is simulated directly; and frequency
domain, in which one solves for the time-harmonic eigenmodes — band structures
or dispersion relations — of light in the structure. To solve Maxwell’s equations in
3D for periodic dielectric media in the time domain, we employ Yee-lattice Finite
Difference Time Domain (FDTD) methods, which can include periodic as well as
absorbing boundary conditions.6 To solve Maxwell’s equations in 3D for periodic
dielectric media in the frequency domain, we begin by expanding the fields in plane
waves. As in the case of electrons, the use of a planewave basis set has a number of
desirable consequences.5 First, the set is complete and orthonormal. Second, finite
sets canbe systematically improved in a straightforward manner.Third, a priori knowl-
edge of the field distribution is not required for the generation of the set. Fourth,
the constraint of divergenceless fields is easily maintained. Finally, there are extremely
reliable and efficient methods for calculating the eigenfields, such as precondi-
tioned conjugate gradients. The chief difficulty, however, in using plane waves
would appear to be that huge numbers of plane waves are required in order to describe
the very rapid changes in dielectric constant of photonic crystals. Actually, this is not
the case and the potential problem can easily be overcome by a better treatment of
the boundaries between dielectric media. In particular, it has been discovered4 that
construction of a dielectric tensor to interpolate in the boundary regimes leads to a
rapid convergence of all eigenmodes, improving by over an order of magnitude on
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figure 1

Electric field pattern in the vicinity of the
sharp 90-degree bend.The electric field is
polarized along the axis of the dielectric rods.
The green circles indicate the position of the
rods. Note that unlike the mechanism of total
internal reflection, a photonic crystal may
allow light to be guided in air.



previous techniques! Thus, combination of this interpolation scheme together with
a conjugate gradient approach leads to a very efficient method for frequency-
domain calculations.

Concepts and Properties Using a Simple Model System
In this article we shall introduce concepts and properties that are generally valid in
three-dimensional photonic crystals, but for the sake of simplicity and ease of visu-
alization, our examples will involve two-dimensional photonic crystals. We begin by
considering a perfect array of infinitely long dielectric rods located on a square
lattice of lattice constant a and investigate the propagation of light in the plane
normal to the rods. The rods have a radius of 0.20a and a refractive index of 3.4 (which
corresponds to GaAs at a wavelength of 1.5 microns). Such a structure possesses a
complete gap between the first and the second transverse magnetic (TM) modes. (For
TM modes, the electric field is parallel to the rods.) Once we have a
band gap, we can introduce a defect inside the crystal to trap or local-
ize light. In particular, we shall investigate defects and defect-
complexes that will correspond to specific components and devices
leading to novel waveguides, waveguide bends, microcavities, wave-
guide crossings, waveguide splitters, and channel-drop filters.

Photonic-Crystal Waveguides
By making a line defect, we can create an extended mode that can
be used to guide light. Using photonic crystals to guide light consti-
tutes a novel mechanism. Traditionally, waveguiding is achieved in
dielectric structures, such as optical fibers, by total internal reflection.
With this mechanism, the light is forced to propagate in the high-index portion of
the waveguide. When a fiber is bent verytightly, however, the angle of incidence becomes
too large for total internal reflection to occur, and light escapes at the bend. Photonic
crystals can be designed to continue to confine light even around tight corners
because they do not relyon index guiding or the angle of incidence for confinement.

To illustrate this point, we remove a row of dielectric rods from the photonic crys-
tal described above. This has the effect of introducing a single guided-mode band
inside the gap. The field associated with the guided mode is strongly confined in
the vicinity of the defect and decays exponentially into the crystal. A truly unique
aspect of photonic crystal waveguides is their ability to guide optical light, tractably
and efficiently, through narrow channels of air, using only dielectric material. This
has never been possible before, and has important practical consequences because
of lower absorption losses, much weaker nonlinear effects, and the potential for very
high-power transmission. 

Once light is introduced inside the waveguide, it really has nowhere else to go.
The only source of loss is reflection from the waveguide input.This suggests thatwe
mayuse photonic crystals to guide light around tight corners as illustrated in Figure1.
To determine the performance of this waveguide-bend configuration, we study

mit physics annual 2001  joannopoulos ( 35

75 80 85 90 95 100 105 110

1.5

1.0

0.5

0

Frequency  (GHz)  

theory

experiment

900  bend

Tr
an

sm
is

si
on

 E
ffi

ci
en

cy

figure 2

Transmission efficiency around a sharp
90-degree bend for a waveguide “carved
out” of a square lattice of alumina rods in air.
The red circles are experimental
measurements and the blue circles are 
the theoretical prediction.



the effects of sending a broad-spectrum Gaussian pulse at one end of the bend. The
fractional intensity is then evaluated as a function of frequency at points before and
after the bend, yielding the transmitted and reflected power, respectively. Although
the radius of curvature of the bend is less than the wavelength of the light, nearly
all of the light is transmitted through the bend over a wide range of frequencies through
the gap. The small fraction of light that is not transmitted is reflected. For specific

frequencies, 100% transmission can be achieved!7 Clearly, avery
basic principle must be at work and it is the following: Because
of the presence of the gap, and the linear topologyof the defect,
light can only scatter forwards or backwards once it is in the
defect. For all practical purposes, therefore, the light “thinks”
it is in one dimension (1D). And we can now map this prob-
lem onto the elementary quantum mechanics problem of an
electron resonant scattering over a barrier in 1D. If the barrier
is symmetric, with width equal to integer multiples of half a
wavelength, one obtains complete transmission. Note that a crit-
ical and necessary condition for 100% transmission efficiency
is that the photonic crystal waveguide be single-mode in the
frequency range of interest.

A recent experimental verification of 100% transmission efficiency at very sharp
bends is illustrated in Figure2. These are results from S.Y. Lin et al.8 who performed
experiments at millimeter lengthscales for a series of waveguide bends — similar to
the configuration in Figure1— using an appropriately scaled square lattice of alumina
rods in air.The red circles are experimental measurements and the blue circles are the
theoretical prediction. Good agreement is obtained over a wide range of frequencies.

Bound States at Waveguide Bends and Constrictions
Bound states in waveguide bulges, and especially in waveguide bends, have recently
been the subject of widespread theoretical and experimental investigation. Gold-
stone and Jaffe9 proved that bends, which behave like local bulges in the guide, always
support bound states in constant cross-section quantum waveguides under the
condition that the wavefunction vanishes on the boundary. Photonic crystals,
however, provide a new mechanism for the appearance of bound states in waveguides.10

The key property of photonic crystal waveguides is that they can be designed to
possess a mode gap in their spectrum. These mode gaps make it possible for bound
states to exist in bends, bulges, and even constrictions, both above and below the cutoff
frequency for guided modes. As an example, consider the guided-mode bands plot-
ted along the diagonal (1,1) direction of the lattice as shown in Figure3. These are a
superposition of the bands for a (1,1) waveguide with one missing-row (open circles),
and for a (1,1) waveguide with three missing-rows (filled circles). Note that the
guided-mode band of the narrower waveguide falls completelywithin the mode gap
of the wider waveguide. This suggests that a constriction in the wider waveguide could
then lead to a bound state within the constriction. Moreover, this should not depend
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Superimposed dispersion relations for the
two guides along the (1,1) direction. Open
circles are for the narrow waveguide and
filled circles are for the wide waveguide, as
discussed in the text.



on the angle between the waveguides. This is exactly what happens, as shown in 
Figure 4 for the case of a constriction at a 180° bend.

By choosing a configuration such that the constriction has length 3√2a, we indeed
find a bound state at �=0.41(2πc/a). The electric field of the mode is mostly confined
to the inside of the narrow guide section at the 180° bend. Since the
mode is close in frequency to the mode gap edge, the decay constant
is small and the electric field decays slowly in the semi-infinite section.
Nevertheless, it is a bona fide bound state whose counterpart would be
impossible to obtain in conventional waveguides.

Photonic Crystal Microcavities
In addition to making line defects, we can also create local imper-
fections that trap light at a point within the crystal. As a simple
example, let us choose a single rod and form a defect by changing
its radius. Figure 5 shows the defect-state frequencies for several
values of the defect radius.Let us begin with the perfect crystal—where
every rod has a radius of 0.20a— and gradually reduce the radius of
a single rod. Initially, the perturbation is too small to localize a state
inside the crystal. As the radius approaches 0.15a, a singly-degener-
ate symmetric localized state appears in the vicinityof the defect. Since
the defect involves removing dielectric material in the crystal, the state appears at
a frequency close to the lower edge of the band gap. As the radius of the rod is further
reduced, the frequency of the defect state sweeps upward across the gap.

Instead of reducing the size of a rod, we also could have made it
larger. Starting again with a perfect crystal, we gradually increase the
radius of a rod. As the radius reaches 0.25a, a doubly-degenerate mode
appears at the top of the gap. Since the defect involves adding mate-
rial, the modes sweep downward across the gap as we increase the
radius. They eventually disappear into the continuum (below the gap)
when the radius becomes larger than 0.40a. The electric fields of these
modes have two nodes in the plane and are thus dipolar in symme-
try. If we keep increasing the radius, a large number of localized modes
can be created in the vicinity of the defect. Several modes appear at
the top of the gap: first a quadrupole, then another (non-degenerate)
quadrupole, followed by a second-order monopole and two doubly-
degenerate hexapoles. We see that both the frequency and symme-
try of the resonant mode can be tuned simply by adjusting the size of the rod. One
important aspect of a finite-sized microcavity is its quality factor Q, roughly ����
where �� is the width of the cavity resonance, a dimensionless measure of the life-
time of the resonant state. Villeneuve et al.11 have studied a finite-sized crystal made
of dielectric rods where a single rod has been removed. They verified that the value
of Q increases exponentially with the number of surrounding rods and found that
it reaches a value close to 104 with as little as four rods on either side of the defect.
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figure 4

Electric field for the bound state at 
�= 0.41 (2πc/a) in a constriction of
length 3a in a 180° waveguide bend.
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Defect states introduced into the gap by
changing the radius of a single rod in an
otherwise perfect square lattice of dielectric
rods in air. When the radius is 0.2a there is
no defect and when the radius is zero the rod
has been completely removed. The shaded
regions indicate the edges of the band gap.



Note also that these cavities possess small modal volumes, on the order of (��2n)3. The
combination of large quality factor with small modal volume offers a unique capa-
bility of maximally enhancing spontaneous emission.

Waveguide Crossings
The ability to intersect waveguides is crucial in constructing integrated optical
circuits, due to the desire for complex systems involving multiple waveguides. Of
particular importance is the possibilityof achieving low crosstalk and high through-
put in perpendicular intersections. Previous studies of traditional waveguide inter-
sections12,13 have lacked general principles that could be applied a priori to diverse
systems. Moreover, they have typically been concerned with shallow-angle crossings
for wavelengths many times smaller than the waveguide width. Although perpen-
dicular crossings in such systems exhibit low crosstalk, the crosstalk is unacceptably
high when the waveguide width is on the order of half a wavelength. In contrast,
using photonic crystal waveguides, perpendicular crossings could be designed that
effectively eliminate crosstalk—even when the waveguide width is small— permit-
ting single-mode waveguides with optimal miniaturization.14

The fundamental idea is to consider coupling of the four branches, or ports, of
the intersection in terms of a resonant cavity at the center. If the resonant modes excited
from the input port can be prevented by symmetry from decaying into the trans-
verse ports, then crosstalk is eliminated and the system reduces to the well-known
phenomenon of resonant tunneling through a cavity. This situation can be achieved
by means of the following conditions:

1. Each waveguide must have a mirror symmetry plane through its
axis and perpendicular to the other waveguide, and have a sing1e
guided mode in the frequency range of interest. This mode will be
either even or odd with respect to the mirror plane.

2. The center of the intersection must be occupied by a resonant cavity
that respects the mirror planes of both waveguides. 

3. Two resonant modes must exist in the cavity, each of which is even
with respect to one waveguide’s mirror plane and odd with respect
to the other. These should be the only resonant modes in the
frequency range of interest. 

If these requirements are satisfied, then each resonant state will couple to modes
in just one waveguide and be orthogonal to modes in the other waveguide. An
example of such a configuration is illustrated schematically in Figure 6. (For simplic-
ity, we depict a lowest-order even waveguide mode.) Therefore, under the approx-
imation that the ports only couple to one another through the resonant cavity,
crosstalk will be prohibited. The transmission to the output port is described by reso-
nant tunneling, and one can use coupled-mode theory15 to show that the through-
put spectrum will be a Lorentzian peaked at unity on resonance. The width of the
Lorentzian is given by the inverse of the cavity’s quality factor Q, which is propor-
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figure 6.

Abstract diagram of symmetry requirements
for waveguide crossing, showing waveguide
mode profiles and resonant-cavity mode
contours. By symmetry the solid-line modes
cannot couple with the dashed-line modes
and vice versa.



tional to the lifetime of the resonance mode. 
The required parity of the cavity modes is easy to achieve using the results of 

Figure 5. The desired resonant cavity is created by introducing a single rod of radius
0.3a at the center of an otherwise perfect photonic crystal waveguide crossing,
together with three rods of normal radius along the waveguides in the vicinityof the
intersection, as shown in Figure 7. This leads to doubly-degenerate modes of the requi-
site symmetrywith a frequencyof 0.36 (2πc/a). To determine the performance of this
waveguide-crossing configuration, we study the effects of sending a broad-spectrum
propagation Gaussian pulse to the input port (left). The fractional power transmission
is then evaluated as a function of frequency for the output port (right) and one of the
transverse ports (top), yielding the throughput and crosstalk, respectively. We find
that both the throughput and the crosstalk for an empty intersection lie in the
20–40% range. This is because the empty intersection does not support resonant states
of the correct symmetry. In contrast, the intersection shown in Figure 7 reaches nearly
100% throughput with an unprecedented crosstalk of only 5�10–9! 

Waveguide Splitters
Waveguide branches also playan important role
in integrated photonic circuits. Ideally, such a
device splits the input power into the two
output waveguides without significant reflec-
tion or radiation losses. Motivated by the goal
of miniaturizing photonic components and
circuits, there have been many efforts to
construct wide-angle branches.16 Despite such
efforts, the splitting angles are still limited to
a few degrees for conventional structures, due to the inherent radiation loss at the
branching region. Moreover, while such loss can be substantially reduced by increas-
ing the index contrast between the guide and the surrounding media, it cannot be
completely suppressed. Photonic crystals offer a way to completely eliminate radi-
ation losses, and therebyopen the possibilityof designing wide-angle branches with
high performance. Very recently, estimates of the transmission characteristics of a
l20° Y-branch in a photonic crystal with hexagonal symmetry have been presented
by Yonekura et al.17 However, direct and accurate numerical characterizations of
the transmission and reflection properties through a single waveguide branch have
not been previously performed. Moreover, a general criterion for ideal performance
of waveguide branches in a photonic crystal has only recently been presented.18

In order to obtain a qualitative understanding of waveguide branches in a
photonic crystal, we consider the theoretical model shown in Figure 8. The branch-
ing region is treated as a cavity that supports a single symmetric resonant mode that
couples to the input and output waveguides. The resonance in the cavity then deter-
mines the transport properties of the branch. The transmission and reflection prop-
erties of such a model can be calculated using coupled-mode theory15, which relates
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figure 7

Steady-state electric field distribution for the
case of the photonic crystal waveguide
intersection discussed in the text. Essentially,
all the power is transported through the
junction with negligible crosstalk in the
transverse waveguides.
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the incoming and outgoing wave amplitudes at ports 1, 2, and 3 to the amplitude
of the excited resonant mode itself. One can then show analytically18 that a criterion
for perfect transmission exists, and that it is given by the simple rate-matching
condition:

(1) 

where 1/�j is the amplitude decay rate of the resonance into the j-th port. Equation
(1) immediately predicts that a 120° Y-branch with C3v symmetry (i.e., the symme-
try group of an equilateral triangle) can never provide 100% transmission! This is
because the decay rates into the three ports are then equal, i.e., 1/�1 = 1/�2 = 1/�3

and Eq. (1) cannot be satisfied. Thus the 120° splitters considered by Yonekura
et al.,17 do not completely eliminate reflection. Arbitrarily high transmission
approaching 100%, however, can be achieved in a structure without three-fold
rotational symmetry. For example, it is clear from Eq. (1) that 100% transmission
could be achieved, if obstructions were introduced between the resonant cavity
and the waveguides of ports 2 and 3, to reduce 1/�2 and 1/�3. This is a rather counter-
intuitive result at first glance, but provides precisely the guidance needed to design
large-angle splitters with high performance characteristics. 

Let us now demonstrate these ideas with a calculation of transmission through
a T-shaped photonic crystal waveguide branch (i.e. with a 180° branching angle). The
waveguide is introduced by removing one partial row and one full column of rods
in our basic system of square lattice of dielectric rods in air. Moreover, to reduce the
coupling between the resonance and the output waveguides, we place extra rods between
the input and output waveguides, as illustrated in Figure 9. To characterize the
transmission and reflection properties of this branch, we excite a Gaussian pulse in
the input waveguide, and analyze the field amplitude at a point deep inside an
output waveguide. For the case of a perfectly emptyT-junction we find that the trans-
mission coefficient remains around 80% for a wide range of frequencies. As the radius
of the extra rods is increased from zero, the transmission is significantly improved
and approaches the optimal value of 100% at a radius near 0.1a. Further increasing
the radius, however, results in a deviation from the rate-matching condition, and
therefore leads to a decrease in transmission.

Channel-Drop Filters
One of the most prominent devices in the telecommunications industry is the chan-
nel-drop filter. This prominence is a consequence of both its importance and its size
(~100cm2)! Channel-dropping filters are devices that are necessary for the manip-
ulation of wavelength-division multiplexed optical communications, whereby one
channel is dropped at one carrier wavelength, leaving all other channels unaffected.
Photonic crystals present a unique opportunity to investigate the possibilities of minia-
turizing such a device to the scale of the wavelength of interest—1.5 microns. We
now combine line defects and point defects to make a novel photonic-crystal chan-
nel-drop filter that gives access to one channel of a wavelength-division multi-
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Schematic of a theoretical model for
waveguide branches.The gray regions
represent the waveguides and the circle
represents a resonator cavity.
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plexed signal while leaving other channels undisturbed. Two parallel waveguides—
a main transmission line and a secondarywaveguide—are created inside a photonic
crystal byremoving two rows of dielectric rods. A resonant cavity is introduced between
the two waveguides by creating one or more local defects. Resonant cavities are attrac-
tive candidates for channel dropping since they can be used to select a single chan-
nel with a very narrow linewidth. The performance
of the filter is determined by the transfer efficiency
between the two waveguides. Perfect efficiency corre-
sponds to complete transfer of the selected channel—
into either the forward or backward direction in the
secondary waveguide—with no forward transmis-
sion or backward reflection in the main transmission
line. Moreover, all other channels should remain unaf-
fected by the presence of the optical resonator. Fan 
etal.19-20 have proved that there are three conditions that
need to be satisfied by the coupling resonator in order
to achieve optimal channel-dropping performance:

1. The resonator must possess at least two resonant modes, each of
which must be even and odd, respectively, with regard to the
mirror plane of symmetry perpendicular to the waveguides.

2. The modes must be degenerate (or nearly so). This condition is
rather subtle because the intrinsic symmetry of the system does not
support any degeneracies. Consequently one must force an
accidental degeneracy!

3. The modes must have equal Q (or nearly so). 

All three conditions are necessary in order to achieve complete transfer. The reflected
amplitude in the transmission line originates solely from the decay of the localized
states. The reflection therefore will not be cancelled if the optical resonator supports
only a single mode. To ensure the cancellation of the reflected signal, the structure
must possess a plane of mirror symmetryperpendicular to both waveguides and support
two localized states with different symmetry with respect to the mirror plane, one
even and one odd. Since the states have different symmetries, tunneling through each
one constitutes an independent process. The even state decays with the same phase
along both the forward and backward directions while the odd state decays with
opposite phase. When the two tunneling processes are combined, because of the phase
difference, the decaying amplitudes cancel along the backward direction of the trans-
mission line. For cancellation to occur, the lineshapes of the two resonances must
overlap. Since each resonance possesses a Lorentzian lineshape, both resonances must
have substantially the same center frequency and the same width. When such
degeneracyoccurs, the incoming wave interferes destructivelywith the decaying ampli-
tude along the forward direction in the transmission line, leaving all the power to
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figure 9

Steady state field distribution at �0 = 0.39
(2πc/a) for a T-splitter with extra rods of
radius 0.1a. The fields are completely
confined within the waveguide regions and
split equally into the output waveguides.



be transferred into the secondary waveguide at the resonant frequency. 
A photonic-crystal system provides precisely the control necessary to satisfy all

three conditions. An example of a photonic-crystal channel-drop filter is shown in
Figure 10. The cavity consists of a single point defect with a radius 0.60a.As we have
already seen (Figure 5) this defect supports a doubly-degenerate hexapole state near
�0 = 0.39 (2πc/a) with the required symmetry. However, the presence of the wave-
guides next to the cavity breaks the degeneracyof the hexapoles. To restore the degen-
eracy, we change the dielectric constant (or equivalently, the size) of two rods
adjacent to the defect. By properly changing the rods, we can affect the modes in
different ways and force an accidental degeneracy in frequency. An approximate degen-
eracy in width exists between the states since the hexapoles possess large enough orbital
angular momentum to ensure roughly equal decayof the even and odd modes into
the waveguides. We simulate the filter response of the structure by sending a pulse
through the upper waveguide. The transmission in the main line is close to 100%

for every channel, except at the resonant frequency,
where the transmission drops to 0% and the trans-
fer efficiency approaches 100%. The quality factor
is larger than 6,000. Since the even state — even with
respect to the mirror plane perpendicular to the 
waveguides — is odd with respect to the mirror plane
parallel to the waveguides, the transfer occurs along
the backward direction in the secondary wave-
guide. Note that the size of this device is less than
100 square-microns instead of over 100 square-
centimeters, as with present technology!

Finally, although the lineshape of the current resonant modes is Lorentzian, it
can be modified to be of the preferred “square-wave”shape by introducing complexes
of coupled resonant modes as discussed in detail in Ref. 21.

Conclusions and Final Remarks
Presently in telecommunications and optoelectronics there is a great drive towards
maximal miniaturization of optical devices, approaching the scale of the wave-
length itself. The goal is eventually to integrate such devices on a single chip. To achieve
such localization, however, it will be necessary to exploit mechanisms that go
beyond index guidance (total internal reflection). Photonic crystals thus provide a
new and promising foundation upon which to build future optical systems. In
particular, the two most fundamental components of optical devices are wave-
guides and cavities, and in both cases photonic crystals promise important advan-
tages in localization, tunability, and efficiency.

Minimizing radiation losses in optical structures is an important prerequisite for
their use in efficient optical devices. In this regard, a new 3D photonic crystal struc-
ture has recently been introduced22 that combines all the advantages of the network-
ing simplicityof 2D photonic crystals with the control of an omnidirectional photonic
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figure 10

Steady-state field distribution of the photonic
crystal channel drop filter at resonance. Note
that the size of this device is on the order of
the wavelength of the light in air.
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band gap. This is a very important development that could help pave the way to future high-density
integration of optical components and devices.
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