
ur sun is one amongst hundreds of billions of stars 

in our galaxy. Based on the number of times the 

planetary dice must have been thrown, all kinds of 

imaginable (and even planets far beyond our imagination) 

must be out there. This is a very exciting time for extrasolar 

planets (“exoplanets”): almost 300 are known to orbit nearby 

stars and their diversity is enormous. 

T H E  K N O W N  E X O P L A N E T S  A R E  S H O W N  in Figure 1, in terms of the planet 
mass vs. planet-star separation. In this figure, we can see that exoplanets exist 
with all masses and planet-star separations that are accessible using current 
technology. Exoplanet formation appears to be a random process, and, together 
with “planetary migration” gives rise to such a wide range of exoplanets. 

In this article, I will describe the methods used to determine planet 
composition, the types of exoplanets found so far, and the ongoing search for 
habitable worlds. 
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Transiting Exoplanets
How can we characterize the composition of exoplanets? The answer lies with 
transiting exoplanets. Transiting planets are those that pass in front of their parent 
star as seen from Earth. The starlight dims by an amount equal to the planet-to-star 
area ratio. If we know the size of the star, we can infer the size of the exoplanet. 
From a different detection technique—radial velocity measurements—astronomers 
can determine the exoplanet mass. Mass and size (or volume) give density. Finally, 
from the average density and planet mass we can infer the planet’s bulk compo-
sition. The transit technique is the only way we can study the mass, radius and 
average density of exoplanets. Over fifty transiting planets are known, and more 
are being found monthly.

How to Infer an Exoplanet’s Bulk Composition
To study an exoplanet’s interior composition, we use the planet’s mass and radius. 
Indeed, these are often the only two observations available to us. Next, we use 
models of the planet interior that match the known planet mass and radius. The 
basic picture behind the models is the idea that pressure from solid or gaseous 
material inside the planet prevents the planet from collapsing under its own gravity. 
To model this so-called hydrostatic equilibrium, we must know how the density 
of a given material behaves under the pressure of the overlying shells of material 
in a planet. For example, a planet 10 times the mass of Earth made of the same 
material as Earth does not have the same average density as Earth. Instead, such a 

figure 1 
Known planets as of June 2008. The 
symbols indicate the discovery technique. 
Technological limitations prevent planets 
from being discovered in most of the blank 
regions in this diagram.
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super Earth has a higher density, because the outer layers of the planets crush the 
inner layers and make the planet more compact. 

Exactly how much the material in the inner planetary layers can be crushed is a 
critical input to the model. Indeed, many researchers spend entire careers on experi-
ments to understand planetary materials at high pressure; we use this data as input 
to models. Some exoplanet interiors are expected to reach high pressures (millions of 
times higher than atmospheric pressure), beyond the reach of laboratory experiments. 
In this case, we use calculations from quantum mechanics that describe how nuclei 
and electrons interact at very high pressures, when some of the electrons have been 
“popped off” the atoms due to the high pressures, thus creating an electron degenerate 
gas. Stated another way, my models solve two equations (the mass of a spherical shell 
and hydrostatic equilibrium) together with a third equation, the “equation of state” 
or relationship between pressure and density (and temperature) of a given material. 
 
Types of Known Exoplanets
Let us start the discussion of planet types with the planets in the top right corner 
of the mass-radius diagram. These are massive giant planets, about 300 times the 
mass of the Earth, and composed mostly of hydrogen and helium. Here we can 
see the diversity of exoplanets in terms of their masses and radii. Some of the most 
extreme exoplanets are very near the top of the diagram. These planets are too big 
for their mass and age. Planets are born big and hot, and contract and cool as they 
age. Something is preventing the largest hot Jupiters from contracting and cooling. 
While researchers do not agree upon what, everyone agrees that an extra source of 
energy must exist in the planet interior. The source of this interior energy is one of 
the most interesting, outstanding questions in exoplanet research.

The exoplanet second closest to the right edge of Figure 4 is also an intriguing 
planet. This planet is eight times the mass of Jupiter—an additional 2,500 Earth 
masses! Yet, the planet is the same size as Jupiter. Let’s imagine starting with a 

figure 2 
Schematic illustration of a transiting 
exoplanet. Not to scale. 
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Jupiter-mass, Jupiter-size planet and adding 2,500 Earth masses-worth of hydrogen 
and helium. We expect the planet to get larger, and the outer layers of the planet 
indeed get larger. With increasing mass, however, the interior of the planet reaches 
a higher and higher pressure, so high that an increasing number of the electrons 
are stripped from the parent atoms, creating a sea of electrons called an “electron 
degenerate gas.” For objects we experience in everyday life, adding mass to an 
object makes it larger. For electron degenerate material, adding mass makes the 
material smaller because with some of the electron-electron repulsion removed by 
the stripped-off atoms, the atomic nuclei are able to get closer and closer together. 
The net effect is that the interior of the planet gets smaller with increasing mass. 
The canceling effects of the bigger exterior and smaller interior mean the planet 
remains the same size despite being so much more massive than Jupiter.

Moving down in planetary mass, the planet HD 149026 also has no solar system 
counterpart. This Saturn-mass planet is composed of an outer layer of about thirty 
Earth masses of hydrogen and helium. The planet’s interior is made up of about 
sixty Earth masses of rock and ice. This is equivalent to all of the rock and ice in the 
solar system combined, in one exoplanet! A Neptune-mass exoplanet has recently 
been discovered, and while its size is also the same as Neptune’s the details of the 
planet’s average composition is not known. We can think of both HD 149026 and 
the Neptune-mass transiting exoplanet as rock-gas hybrid planets.

We are now anticipating the discovery of a number of transiting rocky exoplan-
ets. These so-called “super Earths” are planets from one to upwards of ten Earth 
masses. Super Earths are expected to be predominantly rocky, with little hydrogen 
and helium, because of formation processes for low-mass planets. One dozen super 
Earths are already known, though none are transiting.

Why all the excitement about small planets? Giant planets, while interesting in 
their own right, are not at all suitable for life as we know it. The giant planets have 
a significant amount of hydrogen and helium, in the form of massive “envelopes” 

figure 3
Illustration of planet interiors for several 
different exoplanets. (Figure by Casey Reid, 
courtesy Sky and Telescope.)
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that surround the planet interior. These hot envelopes make the planets completely 
inhospitable to life, because they act like a blanket on the planet, trapping interior 
heat and making the surface temperatures far too high for life. Planets like the hot 
Jupiters have no surface to speak of, further complicating the origin and existence 
of life. Super Earths, in contrast to the giant planets, are anticipated to be almost 
entirely rocky, with thinner atmospheres that are conducive to life, provided that 
the planet is neither too hot nor too cold.

Why all the excitement about transiting small planets? Again, transiting planets 
are the only exoplanets whose physical properties can be studied with current tech-
nology. Beyond the planet mass and radius, the planet’s atmosphere can be studied 
in search of molecules that are helpful for life or are actual signs of life.

In anticipation of the discovery of transiting super Earths, my students and I 
have been studying the interiors and atmospheres of exoplanets. Our aim is both 
a fundamental understanding of the planet masses and radii, as well as a complete 
picture of the range of planet compositions that are possible for a given mass 
and radius. 

Researchers at MIT are developing a satellite to search for more transiting 
planets. The Transiting Exoplanet Survey Satellite (TESS), led by George Ricker, 
will survey two million stars to find over one thousand transiting exoplanets, a 
subset of them super Earths. I am leading the development of different project, a 
suite of nanosatellites to search individual bright sun-like stars for Earth analogs 
(Earth-size planets in Earth-like orbits). 

figure 4 
Mass-radius relationships for solid planets. 
The solid lines are models of homogeneous 
planets and the non-solid lines are models 
of planets with internal materials separated 
by layers according to density. The magenta 
squares denote the transiting exoplanets. 
Note that electron degeneracy pressure 
becomes important at high mass, causing 
the planet radius to become constant and 
even decrease for increasing mass.
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 In 2008, we are standing on a great divide in exoplanets. On the one side of this 
divide are the 300 giant exoplanets. Over fifty are transiting planets, and we have 
been able to measure their masses and radii and make models to understand the 
planetary composition. On the other side, we are developing technology to discover 
true Earth analogs to answer the ancient questions, “Do other Earths exist?”, “Are 
they common?” and “Do they have life?” In the meantime, the observational and 
theoretical techniques we are developing will enable us to interpret observations 
of transiting super Earths, as soon as they are discovered, including identification 
of potentially habitable worlds. 
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