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n recent years, quantum mechanics has come to be 

seen not only as a theory of what happens at very 

short length scales, but also as a theory of informa-

tion. This is analogous to the way that relativity is not merely 

a theory of objects traveling close to the speed of light, but also 

changes the way we define space and time. What does this 

new perspective offer?

By thinking about quantum mechanics as a theory of information, we gain the 
ability to understand it in ways that are independent of the specific physical 
realization. For example, classical computer science is able to describe the same 
information-processing techniques whether they are implemented on a big 
abacus or a modern computer cluster. Likewise, quantum information science 
uses tools that are equally applicable to quantum information processing in 
superconducting systems, trapped ions, or an array of spin-½ particles. Once 
we consider quantum information abstractly, we can explore how to use it 
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for communication or computation tasks, some of which would be unimaginable 
without quantum mechanics.

One example of this shift in perspective is the venerable Heisenberg uncertainty 
principle. Originally, this was viewed as a limitation on our ability to simultane-
ously measure the position and momentum of a particle. The uncertainty prin-
ciple applies more generally to other pairs of measurable quantities, that we call 
complementary observables. For example, consider a spin-½ particle such as an 
electron. What it means to have spin ½ is that when the Z component of the spin 
(the electron’s intrinsic angular momentum) is measured, the only possible outcomes 
are +ℏ⁄2 or −ℏ⁄2, instead of the continuous range of possibilities we would expect 
for a component of a vector. There is nothing special about the Z direction: we can 
measure the component of the spin along any axis, and only ever obtain outcomes 
+ℏ⁄2 or −ℏ⁄2. Measurements along different axes, such as the X and Z directions, 
correspond to complementary observables. A particle known to have spin +ℏ⁄2 in 
the Z direction cannot have a definite value of the X component of its spin. This 
means that measuring such a particle in the X direction would yield each of the 
two possible outcomes ±ℏ⁄2 with 50% probability. This limitation in our ability to 
simultaneously know two complementary properties is not a technological failure, 
but is a fundamental property of quantum mechanics.

Surprisingly, this apparent limitation can be made useful if we understand 
it in the language of information. Suppose you want to send a message and it is 
important to you for military, financial or romantic reasons that this message not 
be read by anyone other than the intended receiver. If it is read, you need to know 
it. Quantum mechanics can make this possible. 

figure 1
Alice wants to send a message to Bob  while 
preventing Eve from learning its contents. Quantum 
mechanics can help make this possible. 10111000100010100101010...

BobAlice

Eve
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Think of a message as a string of zeros and ones (bits), sent by Alice to another 
party, Bob (Figure 1). Classically, nothing would stop an eavesdropper (call her Eve), 
who intercepts the message by copying it and sending it on to Bob without Alice or 
Bob realizing that the message had been read. However, instead of sending classi-
cal bits, Alice could send quantum mechanical bits, which we call qubits. These 
could equally well be spin-½ particles, photon polarizations or 
any other two-level quantum system. A bit value can be encoded 
into a qubit by representing 0 with spin +ℏ⁄2 in the Z direction, 
and 1 with −ℏ⁄2 in the Z direction. Another choice is to use the 
X direction. Since these are complementary observables, a qubit 
that is encoded in the X direction and measured in the Z direction 
will give a random answer that reveals nothing about the original 
bit value. This quantum information theoretic primitive can be 
used to devise schemes in which any attempt at eavesdropping 
can be detected. For example, Alice could send her message with 
some X- and Z-encoded qubits and not tell Bob what her choices 
were until after he receives the message. Eve’s eavesdropping 
would necessarily corrupt some of the message, and thus can be 
detected by Alice and Bob. Using photons, messages have been 
sent over hundreds of kilometers with security ensured by the 
laws of quantum mechanics.

Quantum physics has implications for computation as well 
as for communication. In 1981, Richard Feynman observed that 
simulating a quantum system on a classical computer requires 
effort exponential in the size of the quantum system, which means 
that even small systems are far beyond the reach of supercomput-
ers. However, he suggested that a quantum computer, built to 
take advantage of quantum law, could simulate quantum systems more efficiently. 
This was the first clue that quantum computing might be qualitatively different 
from even very advanced classical computers. Since then, there have been many 
discoveries of quantum algorithms that promise significant speedup over classi-
cal algorithms, even for tasks that on their face have nothing to do with quantum 
physics. These include algorithms for factoring integers; searching; evaluating the 
winner of two-player games; and solving large systems of linear equations.

Quantum cloning and quantum money
One simple but deep difference between classical and quantum information is that 
classical information can in principle always be copied and quantum information 
cannot. This principle is called the quantum no-cloning theorem. 

Suppose someone gives you an electron but doesn’t tell you its spin direction. If 
we could perfectly copy the state then we could measure the spin in the X direction 
of one copy and the spin in the Z direction of the other, thereby learning more about 
the original state than the uncertainty principle permits. This example shows how 
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the uncertainty principle implies a form of the no-cloning theorem, but in fact it 
is a more general result: there is no physical process that can be used to copy an 
unknown quantum state without damaging the original.

The no-cloning theorem is really at the heart of the security of the quantum 
cryptography scheme discussed above, since when an eavesdropper reads a message 
and stores it (even in her brain), she has made a copy. The quantum no-cloning 

theorem forces a tradeoff between how much an eavesdropper can 
learn about a message and how much damage must be caused in 
the process. It is this damage, like a resealed envelope, that alerts the 
receiver to the security breach.

An intriguing application of quantum no-cloning is the possibility 
of using it to prevent the counterfeiting of money. The first scheme 
for quantum money was proposed by Stephen Wiesner, son of MIT 
president Jerome Wiesner, in the same 1970 paper where he proposed 
quantum cryptography. This was long before quantum information 
became an area of study, and several journals rejected Wiesner’s 
manuscript. Weisner’s money idea was to have each bill include a 
bunch of qubits, say spin-½ particles, as part of the bill. The person 
holding the bill would not know the spin axis of each of the qubits. 
The quantum-no-cloning theorem guarantees that if the bill holder 
tries to copy it, he damages it and cannot end up with two good bills. 
So far, so good, because it is counterfeit-proof. The problem is that the 
bill holder has no way of verifying that the quantum bill is a valid bill. 

You can carefully examine a paper bill offered to you to convince 
yourself that it is not a counterfeit and your checking will hopefully 
not degrade the bill. In the quantum case, any attempt to measure the 
qubits without knowing the spin axes necessarily damages the qubits. 
Why not then imprint the spin axes on the bill? If the bearer knows 
the spin axes then he can measure the spins along those directions, 
telling him whether each one is a + or − ℏ⁄2. However, if he now knows 
the spin axes and the spin values he can make as many copies as he 
wants. (The quantum-no-cloning theorem only applies to unknown 
states.) We see that there is a tension between copy prevention and 
having the ability to verify.

To get around this, an MIT group [1] proposed a quantum money scheme using 
highly entangled qubits. Here we sketch their approach. They borrowed some ideas 
from topology having to do with the properties of knots. A knot is a closed loop of 
string in a three-dimensional space. The quantum bill contains a bunch of qubits in 
an entangled superposition of states. Each state encodes a knot and the superposition 
is over knots that can be deformed into each other, but do not look alike. (Imagine 
a simple closed loop of string that has been tangled up. Although topologically it 
is a simple loop, this can be hard to see when it is very tangled.) Such states can be 
verified by a merchant who possesses a quantum lab by making a particular kind 
of measurement that will not damage a valid quantum money state. On the other 
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hand, the no-cloning theorem rules 
out the possibility of copying the state 
without making use in some way of its 
structure. Could a counterfeiter exploit 
the structure of the knot state in order 
to copy it? This cannot be ruled out, 
but it appears to require solving a hard 
problem in topology, and no scheme 
for doing so has been proposed to date.

Entanglement and 
information theory
Entanglement is a feature of quan-
tum mechanics that clearly separates 
quantum theory from classical prob-
ability theory. Measuring subsystems 
of quantum systems can yield corre-
lations that would be impossible in 
the purely classical world. This was 
experimentally demonstrated in the 
1970s and 1980s, following a proposal 
of John Bell’s from 1964.

Here we will give an information-
theoretic view of entanglement by 
considering a simple game (Figure 2). In this game, Alice and Bob are working 
together to maximize the probability of a certain winning outcome, but are isolated 
from each other (space-like separated). The game show host sends a random bit a 
to Alice and a random bit b to Bob. Since they cannot communicate, Alice knows 
a but not b, and similarly Bob knows only b. Next, Alice sends the host a bit x and 
Bob sends the host a bit y. Alice and Bob win if (x+y) mod 2 = ab; in other words, 
if a and b are both 1, then Alice and Bob should output different values, otherwise 
they should output the same value.

One simple strategy is for Alice and Bob to always output 0. This will win 
whenever ab=0, which occurs with probability ¾. You can check—by looking at 
all possible inputs and outputs—that no matter what strategy Alice and Bob have 
agreed upon before separating, they cannot win with probability greater than ¾. 
Surprisingly, if Alice and Bob each have a part of an entangled quantum state, they 
can win this game with probability ½ + 1⁄√2, which is larger than ¾.

The entangled state used here is the singlet, or spin-0, state of two spin-½ particles. 
Alice takes one of the spin-½ particles and Bob the other, and then they separate 
and hear from the host. The fact that the total spin is 0 means that if Alice and Bob 
measure their own particles along the same axis they find that the outcomes are 
perfectly anti-correlated. To win this game, Alice chooses a measurement axis that 
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figure 2
Alice and Bob together are cooperating  to try 
to win at a game. In this game, the host sends a 
question a  to Alice and a question b to Bob. Alice 
replies with answer x and Bob with answer y.  
It turns out that if Alice and Bob share an entangled 
quantum state it can improve their probability of 
winning.
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depends on a, and Bob one that depends on b. Their outputs x and y will come from 
their measurement outcomes. A careful choice of measurement axes (depending 
on a and b), gives awinning probability better than anything achievable classically.

Entanglement is more broadly useful than in helping to win hypothetical games. 
It is at the heart of the speedup achieved by quantum algorithms designed to run on 
quantum computers. This is because n unentangled systems can be described using 
n times the amount of information needed to describe a single system, whereas n 
entangled systems can require an amount of information that is exponential in n. 
A large quantum computer cannot be simulated by a classical device and can do 
things a classical computer cannot. Entanglement can also be used for quantum 
teleportation, cryptography, clock synchronization and many other tasks.

monogamy of entanglement
While entanglement is more useful than classical correlations for many tasks, it 
also has limitations that do not apply classically. Correlations can be shared among 
many systems without restriction. However, entanglement cannot be. A strong 
correlation between the weather in Cambridge and Boston does not prevent a 
strong correlation existing between the weather in Cambridge and Somerville. 

However, if spins A and B are in a singlet state, then spins A and C cannot also 
be in a singlet state. This can be seen as a consequence of the uncertainty principle. 
Suppose that A and B are in a singlet state and that A and C are also in a singlet 
state. Then we could measure B along the X axis and C along the Z axis, thereby 
learning the value of A along both of these axes, a contradiction.

The general phenomenon of non-sharability is called the monogamy of 
entanglement. This principle can explain why so many quantum systems exhibit 
behavior that is effectively classical. If a particle is equally entangled with many 
other particles, then it has very little entanglement with any particular particle. In 
a lab, if you want to create entanglement between two systems, you need to limit 
their entanglement with other systems.

So far we have discussed entanglement as a property of pairs of particles, but in 
many condensed-matter systems there can be entanglement between subsystems, 
each consisting of many particles. This kind of entangled state cannot be represented 
as a product of n one-body wavefunctions, or even as a product of n⁄2 two-body 
wavefunctions. Modeling these wavefunctions can be a difficult task for classical 
computers, and is one of the hoped-for applications of a quantum computer. Still, 
we would like to use insights from quantum information theory to learn when 
manageable representations of the wavefunction can be found.

Many-body quantum Hamiltonians are typically sums of local terms, each 
involving a pair of particles with a short-range interaction between them. Finding 
the ground state of a single term is straightforward, but when the local ground states 
are incompatible, finding the global ground state is a difficult optimization problem. 
Usually this compromise of competing interactions is seen in terms of energies, but 
sometimes it can be understood in terms of entanglement. One might expect that 
short-range interactions give rise to short-range entanglement so that the amount 
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of entanglement between two regions scales like the surface area of their interface. 
However, in some cases entanglement can be proportional to volume, meaning that 
large amounts of long-range entanglement exist. These different cases can lead to 
observably different thermodynamic properties, and it is a major 
open question in condensed-matter physics to determine which type 
of fundamental interactions cause which behavior.

While entanglement in many-body quantum systems often leads 
to unusual physical phenomena, it is also worth understanding when 
it is actually rather limited. If each particle interacts with sufficiently 
many other particles, then monogamy of entanglement implies that 
most of these interactions should be between nearly unentangled 
pairs. This limits the possible contribution of entanglement to the 
physics of a many-body system, and is the justification behind the 
common “mean-field” approximation in which the ground state 
is approximated by an unentangled state. Using monogamy of 
entanglement, the mean-field approximation can be rigorously 
proven to be valid in settings where it was previously only conjec-
tured, such as when no assumption of symmetry is made. And in 
some cases, intuition from the monogamy of entanglement can be 
used to even help efficiently find that state. [2] This is an example of how ideas 
from quantum information can be used to show when quantum systems can be 
efficiently modeled on classical computers.

Another, more speculative, application of the monogamy of entanglement is 
to the black hole information problem. The problem comes from the fact that 
(1) general relativity seems to imply that information is lost when a black hole is 
formed and then evaporates; and (2) quantum mechanics says that information 
can never be destroyed, only rearranged. An apparent resolution is that informa-
tion that falls into a black hole is encoded in the outgoing Hawking radiation. 
However, difficulties arise when we consider throwing one half of an entangled 
pair into a black hole. Consider the half that remains outside the black hole. 
General relativity predicts that this should be entangled with degrees of freedom 
inside the black hole, while quantum mechanics predicts that it will be entangled 
with the outgoing Hawking radiation. These predictions would be compatible if 
we were talking about classical correlation, but for entanglement, the monogamy 
property makes them incompatible. Resolving this problem is an active area of 
research and has brought together string theorists, cosmologists and quantum 
information researchers.
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