


by Martin Zwierlein

The harmonious swing of a pendulum has  
fascinated humankind for centuries, from children  
to physicists. Its thorough analysis by Galileo  
and Heisenberg has given us classical and quantum 
mechanics, and by analogy revealed the nature  
of light and matter. In the quantum world, a 
pendulum bob may exist in a quantum superposition 
of being here and there, of swinging to and fro.  
In a recent experiment at MIT, an atomic version  
of a double pendulum displayed superpositions  
of vibrational states that lasted ten seconds— 
a promising foundation for quantum computers.

The Quantum 
Pendulum Qubit
How atomic vibrations can 
be brought into long-lasting 
quantum superpositions
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Galileo took his pulse. Indeed, the chandelier up in the cathedral’s 
ceiling swung back and forth with remarkable constancy, seemingly 
independent of how strong the wind had pushed it. This moment, some 
440 years ago in Pisa, marks the birth of the pendulum clock and quite 
well the beginning of modern physics. Galileo rushed home, testing 
pendulum motion with a variety of masses and string lengths, and found 
that a pendulum’s period only depended on the length of the string,  
and not on the amplitude of the swing. In passing, he hereby invented 
the experimental method, to test nature rather than to philosophize 
about its workings.

Ever since Galileo, his idea of measuring time through vibrating motion 
has been perfected to an astounding degree. Christian Huygens invented 
the first practical pendulum clock and showed that only for small 
excursions the period is independent of the swing’s amplitude; we say 
the motion is slightly anharmonic. The precision of his clocks was 
remarkable, showing an error of only tens of seconds in one day. Today, 
we still measure time using vibrations, but it is now the vibrations of 
electrons in atoms, and we would err by less than a second in the entire 
age of the Universe.

Between then and now, one revolution has completely changed the way 
we physicists think about motion: quantum mechanics. To understand 
spectra of atomic gases, Niels Bohr postulated that electrons can only 
move along particular orbits around the nucleus, an incredibly daring 
and successful assumption, but the reasons for its success remained 
obscure. In 1925, Werner Heisenberg, on retreat in Helgoland to alleviate 
his hay fever, carefully contemplated the simpler problem of the 
pendulum [1]. He suddenly saw clearly that one had to give up the entire 
notion of precisely determined paths that the pendulum bob follows. 
Indeed, if we did precisely know the bob’s location at some point in time, 
that implied its velocity to be completely uncertain, and the next 
moment it would be anywhere. The delicate balance between position 
and momentum uncertainty is only stably maintained for certain  
values of the pendulum’s energy (Fig. 1). There is a lowest vibrational 
state, which we may call | 0 �, which has the pendulum bob not actually  
at rest (again, then we would precisely know where it is), but in a state  
of minimum uncertainty in both position and momentum. The first 
excited state, | 1 �, of the pendulum, has higher energy than the ground 
state by an amount h ν, Planck’s constant h times the frequency of the 
pendulum ν. This is, not accidentally, Einstein’s relation for the energy of 
a photon. An entire ladder of vibrational states | 2 �, | 3 �, . . . is built up from 
there, each approximately h ν higher in energy than their predecessor.
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FIGURE 1: 

The Quantum Pendulum. An oscillator 
such as the pendulum features a 
(nearly) parabolic potential landscape 
(black curve). In quantum mechanics, 
the position and velocity of the 
pendulum bob are uncertain. We can 
only give a probability to find the  
bob at a certain location, indicated  
by the opacity of the bobs above.  
Only discrete values of the bob’s 
energy are allowed (red lines), the 
quantum states are labelled | n⟩ with an 
integer n, and spaced (approximately) 
by h ν, Planck’s constant times the 
pendulum’s frequency.

For Galileo’s pendulum, this energy is tiny, about 10-34 calories, and 
therefore irrelevant. But this “energy quantization” of oscillators is 
readily seen with atoms, electrons, and, at low temperatures, even with 
entire mechanical oscillators. Interestingly, if the pendulum is in any  
of these states, nothing is actually vibrating. If I repeatedly measure the 
location of the bob, then averaged over many measurements, I will find  
it hanging straight down. To see its average position swing back and 
forth, the pendulum needs to be in a superposition of two energy states, 
so at once in | 0 � as well as in | 1 �, for example. The ability in quantum 
mechanics to create superpositions of quantum states is most amusingly 
illustrated by Schrödinger’s cat, which is placed in a superposition of 
| dead � and | alive � until someone comes and checks on it.

A second quantum revolution
We are currently witnessing a second “quantum revolution,” started  
by MIT’s Peter Shor realizing in 1994 that quantum superpositions,  
like of | 0 � and | 1 � above, allow factorizing numbers exponentially faster 
than on a classical computer. Instead of working serially with bits like  
0 and 1, a quantum computer works with qubits, which can store such 
superpositions of | 0 � and | 1 �. Promising qubit architectures for quantum 
computers are electronic states in neutral atoms, in ions, and in 
superconducting circuits. One difficulty for all platforms is to maintain 
the quantum superposition for a long time, lasting long enough for the 
algorithm to complete. Another concern is how to increase the number 
of qubits to actually perform calculations that cannot be done with 
classical computers.
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Could we actually use a quantum version of Galileo’s pendulum to store 
qubits? Neutral atoms can be trapped in the focus of a laser beam, and 
the restoring force of the light acts like gravity on Galileo’s pendulum. 
What is more, by interfering laser light we can create entire “crystals of 
light,” periodic arrays that can trap thousands of atoms, one in each well. 
And thanks to the techniques of laser cooling and evaporative cooling 
(which brought us Bose-Einstein condensates, the coldest matter of the 
Universe; see Wolfgang Ketterle’s articles in physics@mit 1997 and 2001), 
atoms can be brought to all occupy the ground state | 0 � of their trap.  
It is tempting to think that such an array of “atomic pendula” is a good 
starting point to build a quantum register, a collection of qubits that can 
store quantum information.

However, here we come back to Galileo’s discovery that the frequency  
of the pendulum depends on its length. In the laser trap, the role of  
the length is played by a combination of laser power and how tightly we 
focus it. It turns out to be difficult to have all our pendula have equal 
length, i.e., equal laser power. While apparently swinging in unison in 
the beginning, after a while the atoms get “out of sync.” In the quantum 
picture, the energy h ν between the qubit states | 0 � and | 1 � is not the  
same for all qubits. While such optical lattices for atoms have been 
around for 25 years, the atomic swings themselves have never been 
successfully used to store quantum information for a significant time.

FIGURE 2: 

Two pendula, coupled by a spring, 
feature two characteristic  
modes of motion: The pendula can 
swing relative to each other  
(the “vibrational mode,” left), where 
the spring length oscillates, or  
they can swing together in unison, 
with the spring length fixed (the 

“center of mass mode,” right). In 
quantum mechanics, corresponding 
modes exist, and are described  
by quantum mechanical waves 
(artistic rendition). These two 
quantum states of motion define  
a qubit. [Credit: Sampson Wilcox, 
MIT RLE]
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The double pendulum
We need a new idea. What could be better than a single pendulum to keep 
time? Indeed, two pendula! If we attach a spring between two pendula 
(Fig. 2), there are two natural ways in which they swing as a couple. 
They can swing together in sync (“center of mass mode”) and they can 
swing relative to each other (“vibrational mode”). For identical pendula, 
the difference in frequency between these two ways of swinging only 
depends on the strength of the spring and the pendulum mass.

But where can one find two absolutely identical pendula? Very simply, 
take two atoms and put them into the same laser trap. A wonderful  
fact about atoms is that they are completely indistinguishable. They  
have exactly the same mass, and, if placed in the same trap, they will  
feel exactly the same force. In our analogy, our two “atomic” pendula 
thus have the same string length.

We can now realize the above idea, and use the two different forms of 
coupled motion as our qubit. The idea is shown in Figure 3. One qubit 
state has each atom occupy state | 1 � of the trap (we could write this | 1 � | 1 �), 
the other qubit state has one atom in the ground state | 0 �, the other in 
the second excited state | 2 � (we write | 0 � | 2 �). These two states have the 
same energy, so the overall frequency of their swing, and the value of 
the laser power, no longer matters. As we show in [2], this remains true  
if we include anharmonic corrections, whose presence Huygens first  
noted for the classical pendulum, and Heisenberg had worked out for  
the quantum pendulum [1] in 1925. The resulting energy difference only 
depends on Planck’s constant h, the mass of the atoms, and the geometry 
of the laser trap. If in addition the atoms interact with each other, this 
acts like the “spring” of the classical example, favoring as qubit states the 
relative and the center of mass motion of the atom pair.

Indistinguishable atoms
One last challenge remains: How to fill an array of laser traps uniformly 
with two atoms per well? Not one (or none), not three, but two? At this 
point in the story three more physicist enter the scene: Wolfgang Pauli, 
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FIGURE 3: 

The advantage of using pairs of atoms. 
Using the oscillator states of a single 
atom as qubit states is not a stable 
approach, since the frequency ν will 
differ slightly from one to the next 
qubit. However, using two atoms in 
each well gives access to two states, 
each having two units of vibration: 
| 0 ⟩ | 2 ⟩, where one atom is in the ground, 
the other in the second excited  
state, and | 1 ⟩ | 1 ⟩, where each atom is  
in the first excited state. The energy 
difference between the states is 
negligible on the scale of h ν and 
constant for each well. [Credit: Thomas 
Hartke, Zwierlein Group, MIT]
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Enrico Fermi and Paul Dirac. Pauli’s principle dictates that no two 
electrons can occupy one and the same quantum state. This principle 
underlies the periodic system of the elements. While the single electron  
in hydrogen has nothing to worry, the two electrons in helium must be in  
two different spin states (“up” and “down”) to be able to occupy one and the 
same shell around the nucleus. The third electron in lithium sadly finds  
no more room there and must occupy the next higher shell. Fermi and Dirac 
independently applied this principle to motional states. As Pauli proved, 
his principle affects all particles with half-integer spin, which are called 
fermions. Examples are electrons, protons, neutrons and atoms containing 
an odd number of these building blocks, such as 3He, 6Li and 40K.

In our recent experiment [2], we loaded a gas of fermionic 40K atoms 
containing two spin states into an optical lattice. Using fermions  
ensured that at most two atoms, one of each spin state, would ever be 
found in a given lattice well—just like the two electrons in helium. 
Cooling the gas and tuning the density, we could fill large arrays of 400 
atom pairs, all occupying the motional ground state | 0 � of the trap. In  
this way, the Pauli principle allowed for the high-fidelity initialization of 
our “fermion pair quantum register.”

Controlling interactions
To “load the spring” between our double pendula, that is, to bring the 
atoms into relative vibration, we smoothly turn on repulsive interactions 
between them. This way we can initialize all atom pairs simultaneously  
in the qubit state | 0 � | 2 �. Controlling interatomic interactions exploits  
a “Feshbach resonance,” a rather amazing tool named after Herman 
Feshbach, who was a renowned theoretical physicist at MIT. By simply 
applying a magnetic field in the lab, one brings a molecular state into 
resonance with the two colliding atoms. Resonant interactions are 
induced, as strong as quantum mechanics allows. Feshbach resonances, 
described alongside Frank Wilczek’s article on Feshbach in the 2006 
issue of physics@mit, allowed the creation of superfluids of atomic  
Fermi gases (see the 2006 and 2011 issues).

We are now ready to test our new “double pendulum qubits.” That means  
we need to prepare a quantum superposition of the two ways of motion, 
relative and center of mass, and watch how long that superposition 
remains intact. The first to directly drive a system into a quantum 
superposition of two states was Isaac Rabi, who invented the nuclear 
magnetic resonance technique: an oscillating magnetic field drives 
nuclear spin transitions in atoms. In our double pendulum analogy, it is 
the spring that couples the two pendula—so modulating the spring will 
cause “Rabi transitions” and the pendula will alter their state of motion.

For the two atoms in the laser trap, this means that we need to modulate 
the interactions between atoms, their “spring force,” and the Feshbach 
resonance mechanism allows just that. So as in Rabi’s experiments it is  
a modulation of the magnetic field that drives a Rabi transition, only  
here it is transitions between two motional states of atom pairs, instead  
of nuclear spin transitions.
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Performing this Rabi oscillation on our array of 400 atom pairs, we 
observed coherence times between the two motional states of the pairs 
on the order of ten seconds (Fig. 4). Every atom pair in the experiment  
was resolved under the microscope. The motional state was measured  
by converting relative and center-of-mass modes into bright and  
dark spots on the camera, respectively. This again made use of the 
Feshbach resonance, by converting the center-of-mass motion, where 
atoms are already close, into a tightly bound molecule, invisible to  
our fluorescence imaging.

Coherent vibrations
Whenever one has robust coherence between two quantum states, one 
can measure their energy difference in pristine fashion. This is the 
principle of atomic clocks, which employ Norman Ramsey’s technique 
of “separated oscillatory fields.” A first Rabi pulse creates a superposition 
state, which is allowed to freely evolve for some time, before a second 
Rabi pulse allows to read out the population in each qubit state. Here 
we used this technique to precisely measure the anharmonicity of  
the atom trap, which was indeed found insensitive to the laser power 
and given by the value predicted by Planck’s constant, the atomic mass 
and the geometry of the trap. We were also able to precisely measure  
the energy of the weakly bound molecular state causing the Feshbach 
resonance. In this regime, our qubit was a coherent superposition of two 
free atoms and a tightly bound molecule. The coherence time was long 
enough to allow for 25 000 Ramsey oscillations.
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FIGURE 4: 

Rabi oscillations between motional 
states of atom pairs. By modulating  
the interactions between atoms (the 

“spring force” of the classical analogy), 
coherent superpositions of vibrational 
states are created that are seen to 
persist for many seconds. The top 
graph shows the recorded number of 
pairs in the | 1 ⟩ | 1 ⟩ motional state. The 
three images below show snapshots 
of the quantum register at various 
times. The evolution of the quantum 
states from | 1 ⟩ | 1 ⟩ to | 0 ⟩ | 2 ⟩ and back  
is indicated.
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Quantum computing with vibrating atoms
In the near future, we will develop methods to make two different atom 
pairs interact to realize two-qubit gates. Together with the demonstrated 
control over the atom pair qubit this would constitute an actual quantum 
computer. Furthermore, the method of using two particles instead of 
one to define a single logical qubit is going to be fruitful, even on other 
platforms. For example, superconducting qubits are also realized in an 
energy landscape that has the form of an anharmonic oscillator.

Using more deeply bound molecular states one can imagine arrays of 
precise molecular clocks. These could even run on various molecular 
transitions simultaneously, yielding parallel atom pair clocks “ticking” 
from kHz to hundreds of THz, enabling precision metrology largely 
shielded from laboratory noise.

Finally, increased control over atoms in optical lattices will enhance our 
ability to tackle paradigmatic problems in condensed matter and nuclear 
physics that cannot be solved on a classical computer. Fermions are 
particularly difficult to handle theoretically due to the Pauli principle 
and strong interactions. A famous example is the doped Hubbard model 
of mobile fermions hopping on a lattice and interacting when two unlike 
atoms meet on the same site. Despite the simplicity of the setting, the 
model has to this day not been solved in general. However, it is believed 
to hold the key to understanding high-temperature superconductivity. 
The quantum register described above is in fact built on top of a Fermi-
Hubbard quantum simulator [3], which allows exploring the equation  
of state [4], correlations [5], [6] and transport properties [7] of strongly 
interacting fermions. Maybe the ability to create coherent motional 
states of fermion pairs will enable new insights also into the origins of 
superconductivity at strong coupling.

Looking back, we have come a long way since Galileo has watched that 
chandelier swing in Pisa. But still to this day, the physics of the pendulum 
amazes and inspires us in our endeavor to understand nature.

Collaborators with Prof. Martin Zwierlein on the quantum register project are MIT 
physics graduate students Thomas Hartke, Botond Oreg and Carter Turnbaugh, 
and postdoctoral associate Ningyuan Jia.

Professor Zwierlein’s work on the quantum register was supported by the NSF, 
AFOSR, ONR, the Gordon and Betty Moore Foundation and the Vannevar Bush 
Faculty Fellowship.
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