

Presents ... Monday, September 25, 2023 12:00 pm -1:00 pm Duboc Room – 4-331

Chez Pierre Seminar

Julia A. Mundy, Harvard University

"Superconductivity in a layered square-planar nickelate".

Since the discovery of high-temperature superconductivity in copper oxide materials, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials. One prime materials platform has been the rare-earth nickelates; indeed, superconductivity was recently discovered in the doped compound $Nd_{0.8}Sr_{0.2}NiO_2$. Undoped NdNiO₂ belongs to a series of layered square-planar nickelates with chemical formula $Nd_{n+1}Ni_nO_{2n+2}$ and is known as the 'infinite-layer' (n $=\infty$) nickelate. Our work reports the synthesis of the layered nickelate compounds. We observe a superconducting transition beginning at ~ 13 K in the optimally doped 5-layer Nd₆Ni₅O₁₂. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd₆Ni₅O₁₂ interpolates between cupratelike and infinite-layer nickelate-like behavior. I will also discuss our work further engineering superconductivity in this family with a combination of doping and dimensionality.