

Presents ... Monday, May 5th, 2025 12:00 pm -1:00 pm Duboc Room – 4-331

Chez Pierre Seminar

Hadar Steinberg, Hebrew University

"Universality of Upper Critical Field in the TMD Superconductor Family".

In transition metal dichalcogenides (TMDs) such as H-NbSe₂ an H-TaS₂, superconducting properties are retained down to a single layer, making these materials useful platforms for studying thickness-dependent effects. Specifically, NbSe₂ exhibits a reduction in its $T_{\rm C}$ from

7.2K in the bulk to approximately 3K in the single-layer limit. In TaS_2 , conversely, T_C increases from 0.8K in the bulk to approximately 3K in the single layer limit. This contradicting behavior, which long puzzled researchers, could be related to a thickness-dependent suppression of superconductivity by the competing charge density wave (CDW) phase.

I will present measurements of device-based high-resolution tunneling spectra in TaS₂, where we track the gap structure from the bulk all the way to a single layer. Our devices allow for simultaneous evaluation of the gap Δ , $T_{\rm C}$, and the upper critical field $H_{\rm C2}$. Although TaS₂ is considered as a dirty superconductor, we find that $H_{\rm C2}$ is proportional to Δ^2 , a relation expected for clean superconductors. Even more curiously, we find that the same ratio between $H_{\rm C2}$ and Δ^2 holds for other TMDs: NbSe₂ of all thicknesses, and NbS₂ and TaSe₂, covering 4 orders of magnitude in $H_{\rm C2}$ and covering both clean and dirty limits.