## Chez Pierre

## Presents ...

Monday, September 22, 2025 12:00 pm - 1:00 pm Duboc room - 4-331



## Daniel Kaplan, Rutgers University

## "Designing crystal structures with stacking and light"

The nascent 2D revolution in condensed matter has immense promise for the design of tunable quantum matter. In this talk, I will show new theoretical advances that permit robust and reversible manipulation of quantum materials, through stacking-tuning and light-matter interaction.

Starting with the famous example of multiferroicity, in which quantum materials exhibit competing phases of ferrimagnetism and ferroelectricity, I will present a theory of multiferroic switching in 2D van der Waals layers (vdW) using light pulses. I will explain how many-body effects can be incorporated using time-dependent density functional theory. The result is a method for switching polar and magnetic order that is reversible and ultrafast, as it is driven by electrons and directly couples to their band properties (the quantum metric).

Next, I will show how light-matter coupling can permit Floquet engineering of quantum materials by combining nonlinear phonon-phonon interactions and a solid-state analogue of parametric resonance. Above a dissipation-set threshold, I will demonstrate that energy is coherently transferred to pairs of low-energy excitations which exist at finite frequency *as well as finite momentum*. This momentum can be controlled by detuning the resonance with which light interacts in the solid. The resultant out-of-equilibrium order, — which couples to phonons, magnons, and other low-energy quasiparticles — is shown to be fundamentally robust to temperature and disorder.

Combining insights from the chemistry of 2D vdW layers, I will show that a stacking-driven topological transition can be controlled by phonons, leading to realization of out-of-equilibrium topological invariants. Using a concrete example, a pnicitide bilayer, I will demonstrate two scenarios: adiabatic driving leading to a time-varying Z\_2 invariant and a rapid quench which leads to topological defects and a Moir\'e -like network of trivial and topological domains.